A team of researchers from Carnegie Mellon University (CMU) and the University of Connecticut (UConn) has 3D printed novel calcium phosphate graphene (CaPG) scaffolds that could be used for bone regeneration applications in the future. The team sought to develop an alternative to traditional autogenous bone grafts that simply stabilize bone defects and injuries. The study saw the successful fabrication of a 3D bioprinted alternative that supports tissue regeneration at the defect site, and which possesses numerous desirable properties such as osteoinductivity, biological safety, a long shelf-life, and reasonable production costs. Biomimetic 3D printed CaPG matrix design. Image via Nature. Challenges of 3D printing graphene While graphene’s lightweight properties, electrical and thermal conductivity, and mechanical strength make it a desirable material for applications within biomedicine, energy generation, and microelectronics, much of graphene’s potential comes from deploying the material in its monolayer form. This therefore presents a significant challenge when trying… read more